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Abstract. Dynamicequations in the theory of a relativistic string with point masses
at the ends are formulated only in terms of geometric invariants of the world trajecto-
ries of the massive ends of the string (curvature k, and torsion x4 of the trajectories).
These characteristics allaw us to reproduce the string world surface up to its position
in Minkowski space Eé. The vorsions Kq(7), o = 1,2 obey a system of second-order
differential equations with delay describing the retardation effects of the interaction
of masses through the string, the ke being constants. A new particular solution to
these equations is found that corresponds to periodic torsions.

1. Introduction

A dynamic basis for the hadron model Is the relativistic string with massive ends (for
a review, see [1]). Until now no general solutions have been derived for the equations
describing the dynamics of this systemn, therefore it seems of interest to consider a new
mathematical formulation of that problem which would promote the investigation of
its dynamics and the derivation of new exact solutions.

The action functional {or a relativistic string with point masses at the ends results
in equations of motion of the string and in boundary conditions that physically repre-
sent the equations of motion of two masses interacting through the string. An analogy
arises between this system and classical electrodynamics with charges in which the field
is described by Maxwell equations with charges and the dynamics of the charges in-
teracting with the field is given by the Lorentz equations. Wheeler and Feynman [2],
considering the action to propagate at a distance with a finite velocity, have eliminated
the field variables from the equations of mnotion in electrodynamics, and have formu-
lated the interaction between charges in terms of retarded and advanced propagation
functions when there is no absorption and ernission of the electromagnetic field.

For a system of a relativistic string with masses at the ends we may also utilize the
principle of action at a distance to enable us to find equations of motion in terms of
the characteristics of the trajectories along which the masses are moving provided the
string variables are eliminated. 1t is clear that, as the problem is relativistic, it cannot.
be formulated within the equal-time {ormalism. In the simplest non-relativistic limit
we arrive at a system of two masses coupled by a linearly rising potential [3)].

In this paper, the classical dynamics of the relativistic string with massive ends in
the d-dimensional Minkowski spacetime F}_, is reformulated in terms of the geometric
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invariants of both the string world shect and the world lines of the point masses at
the string ends. In the d = 3 case that we will examine here in more detail for
simplicity, the string coordinates 2#(r, o) as functions of parameters 7 and ¢ are
completely defined by the constant curvatures &, connected with the masses and the
string tension and the torsions x,(r), a = 1,2 of the endpoint trajectories which are
subjected to a system of second-order delay differential equations that takes account
of the retardation effects of the interaction of two point masses through the string.
The well known example {4-8] of the straight-line string with massive ends rotating
in a given plane corresponds to a particular solution of this systern with the constant
torsions £,(7) = £g,, @ = 1,2 when the string ends are moving along the helices. In
this case the string world sheel is a helicoid [6] in the three-dimensional spacetime E3.

In addition, a new exact solution is also found for the periodic torsions &, (7+2w) =
k.(7), ¢ = 1,2 which are given by the Weierstrass function with a real period propor-
tional to 27 and a pure lmaginary period Zw’. The string coordinates are expressed
in terms of normal elliptic integrals and describe a more intricate motion than the
rotation of a stretched string in a given plane including its transverse vibrations. Just
such motions ought to be considered in the string model of hadrons for the calculation
of the contributions to the linear behaviour of the static interquark potential at long
distances [7].

In section 2 the geometric approach to the classical dynamics of the relativistic
string with massive ends is forrulated in the Minkowski space E_, for any spacetime
dimension d. Section 3 is devoted to the derivation of equations for trajectories of the
massive string endpoints in the three-dimensional spacetime E}. In section 4 the
exact solution of these equations is obtained in the case of periodic torsions and the
corresponding string world surface will be constructed in section 5. Section 6 contains

came conreliginne
DI WA A IS IR

2. Equations of motion and boundary conditions

Consider the dynamics of a relativistic string with point masses m; and m, at the
ends. The world sheel with coordinates m"‘(u"), u=0,1,...,d—1,71=10,1 swept out
by the string in the d-dimensional Minkowski spacetime E}_, is an extremal of the
functional of the action [, 6]

(dx“(ré:a(r)))z o

(2.1)

where the first term is the action of a massless relativistic string, vy is the string
tension, ' = (7,0) are parameters on the string world surface, and the derivatives
are as follows :

_ Quh(r, ) P Jz¥ (7, o)

or ‘ dea
dz*(7, 0,(7))

dr

TH

= .'.i."“(‘rv Cl"u{T)) + du(T)a':“(T? o'a(T)) a= 1’2
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The motion of the string endpoints in the plane of the parameters 7 and ¢ is described
by the functions o,(7), a = 1,2. As [or a massless string, the action (2.1) is invariant
under non-degenerate changes of variables, ¥ = 7(r,¢) and & = &(r, o), which allows
us to eliminate any two of the three independent components of the world sheet metric

dx# dx?

g;’j = Thw'é"{;;"% Li=12 (22)

It is convenient to introduce isothermal coordinates 7 and ¢ in terms of which the
metric (2.2) is diagonal and traceless

goo + 911 =0 Y1 =910 =10 (2.3)
The flat Minkowski melric 3, of the enveloping d-dimensional spacetime E;_| has
the signature (+,—,...,—).

Variation of the action (2.1) with respect to z#(r,e) gives equations of motion
linear in the gauge (2.3)

F(r,o)—a2"Mr,0) =0 (2.4)

and nonlinear boundary condittons at the string ends

d [ip(‘r’al) + 0, (r)Eh(r, J‘)] = y[£#(r, oy) + o (1)2" (7, 0,))

m =
Yr | TS o)
d [8#(r,0,) + 6, (r)i*(r.0,) ’
My— L 20 = i (T, a,) + (1) (T, )] 2.5
zdrl \/(1_0_%(1')):&2“,02) J 7l 2) 27)EH (7, 04)] (2.5)

Varying (2.1) with respect to o, (7) we arrive at the same equations (2.5), therefore
the functions ¢,(7), @ = 1, 2 are not dynamical variables [8].

A general solution to the equations of motion (2.4) and gauge conditions (2.3} is
of the form

2(r o) = sk +9lT)]  wf=rde im0 (26)

where (1) are two isotropic vectors,

YEu*F) =0 (2.7)

tangent to the string world surface x#(r, o}. The conditions (2.7) may be satisfied if
we represent ¥} by the following expansions

A (’t£+) r e | d- 1 W

B Y o FNE 7 SR LN 2y by N e oy
WPty =t e e ) JAlT) 4 ) elfutu®)
er::'z féz(’u'") L a=2 a=2 ]

W) = -—d-i-u— e+ et 3wy + 3 ety (um) (2.8)
Vb gy az? 4
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where the constant basis {efj, e, e”} is formed from two isotropic vectors e} e¥, e =
0,e2 = 0,(epe;) = 1 and (d — 1) space-like vectors eh,(eaeg) = —bup:(€gey) =
{e;e,) =0,0=2,3,...,d= 1. The representations (2.8) fully define the world surface
of a relativistic string without boundary in a d-dimensional Minkowski spacetime E}_;
and allow us to construct its hasic quadratic forms,

The expression for metric tensor (2.3} can be obtained by inserting (2.8} into
g0 = 2%(r,0) = (¥4 (v )Y (u7)). In the three-dimensional spacetime E} with
d =142 and fo(ut) = f(ut), go{u") = g(u™), for example, the latter looks as
follows

A {ut)A_{(u~)
4f (ut)g'{u~)

As is known [1], in the d = 3 case the Gauss equation for the world surface of the
relativistic string 2#(r, @) reduces to the Liouville equation for g4, = #%(r, o)

Joo = i'z(f: o) =

[flut) - g(u)%. (2.9)

FPlua(ut,um) A (uT)A_(u7)

61[+(‘)u_ - 2&:2(11"*"’“*) (210)
and (2.9) is the general solution to this equation.
Computation of the coefficients of Lhe second fundamental form
betis = (a5 ,j=0,1; «=23,...,d—1 2.11)
alij = @ Sk Od HLij=v, b a=2z9,..., ( ,

requires a special choice of the orthonormalized system of {d — 2) unit normals n#

(na%) =0 (nony) = =644 (2.12)

which together with tangent vectors &% and £# constitute a moving frame of reference.
This can most easily be done for the d — 1 = 2 case when the field of normals (2.12)
contains only one vector n*{ut, u~) that may be constructed in terms of the vectors
z* and £# as follows

[ x #]

nfut u) = TR (2.13)

where (2 x 1] = ¢, 2“4, and £/Y7 is a totally antisymmetric unit tensor. Inserting
the relations (2.8) with d = 3 into (2.13) and taking into account that [e, x ;] = ey,

le, X eq] = —e,, [eg X €3] = ¢, we arrive at the expansion of the normal n# over the
isotropic basis {ef), e, €5}

n(ut,u”) = 2 + f(u*)y(u‘le‘l‘ i [f(lﬁ) To(uT)les .
Jut) —g(u™)
Using the expansions (2.8) with d = 3 and {2.14) for coefficients of the second quadratic
form by);; = b;; of the string world surface z#(r, 5), according to (2.11) we obtain

(2.14)

A (ut)=A_(u7)

A (ut)+ A_(u7)
. .

2

boo = b1y = by, = b1g = (2.15)
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The first equality of (2.15) shows thal the string world surface belongs to the class of
the minimal surfaces [9] because its wean curvature is zero

1 i bgg— b
h==b. ¢ =20 711 .. 2.16
Qb”y 244y ’ ( )

Here it is assumed that for a.ny point of the string world sheet there holds the condition
Joo = #2>0o0r H ("u+}j (u ) >0 and f(u"') # y\u } as follows from V‘ U'}
For an arbitrary dimensionality d of the enveloping spacetime E}_, the condition

of minimality (2.16) in the coordinate system (2.3) should be replaced by the relations

boigg — 0
= —ale = altl g a=23...,d-1. (2.17)

h
2900

@

For a relativistic string with massive ends the coordinates z#(7, o) of the minimal
string world surface obey the nonlinear boundary conditions (2.5). Substituting (2.6)
inte (2.5) for the isotropic vectors (2.7} and functions ¢ {1) we get

d J @y ud)ud + ¢ (ug)ug
“dr \/%ﬁ);('uj)y'l’_(u;;)itz'ut']‘

ut =71 +0,(7) u; =1 —0,(r) a=12

(-1)**'m = )id — Wl (ug)ug}  (2.18)

For each of value a = 1,2, only d ~ | of the d equations {2.18) are independent of each
other since the projections of the system (2.18) onto the tangent vectors

Pl (ut) — W (u7)
2

#utum) = Y ) j Vet £

(ut,u™) =

coincide. Thus, 2(d ~ 1) independent equations of the system (2.18) contain, as 2d
unknown quantities, two functions o_(7) and 2{d — 1) independent components of the
isotropic vectors ¥l expressed, according to (2.8), H-mnvh Ay, for g0 which are, as
we see from the boundary conditions (2.18), fuuctlons of cra(r) That indefiniteness
is a consequence of equations (2.7} and (2.18) under conformal transformations of the
parameters &% = #%(u*) where 0¥ (u?) are two arbitrary functions of one variable.
So, the definition of system (2.18) may be supplemented by imposing two auxiliary
conditions which must depend on one variable. Choosing the equalities

Ag(ut)=A_(u7) = A = constant (2.19)
to be gauge conditions we will completely fix the coordinate system «' = (r,0) on
the string world sheet. In three dimensions, d = 3, this choice of gauge has a simple

geometric meaning. Indecd, having fixed Ai(u*) according to (2.19), the ceefficients
of the second quadratic forin by, = b;; at d = 3 (2.15) become

bog = (nE) = 0 by, = (na') = A. (2.20)

Geometrically [9], the conditions (2.20) mean that the isothermal coordinates (2.3)
are at the same time the asymptotic lines on the string world surface,
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Let us show that by making the gauge setting (2.19) we can fix the functions o (7)
in equations (2.18). In fact, projecting (2.18) onto normals n#, @ = 2,3, ... ,d—1 and
taking account of {(2.6) and (2.11) one finds 2(d — 1) equations

(14 050 Nbajool 7y 0447} + 26, (7)bgy01(7, 04 (T)) = 0 (2.21)

a=2,3. .,d-1 a=1,2
In the d = 3 case when njy = n¥, by;; = b,; equations (2.21} with (2.20) reads

o {r)=0 a=1,2 (2.22)
Consequently, the o, are constants and we put o) = 0 and ¢, = #. For d > 4 from
(2.21) we may also derive equations (2.22) using the arbitrariness in choice of the
field of normals n% corresponding to the group of transformations SO(d — 2). In fact,
utilizing the expansions 2.8} for the vectors ¥ we get

(&4 2" = PP (u®) = AL (u?)
which in the gauge (2.18) and in the metric (2.3) imply

2o + 2y = —A” (2,40%;01) =0 (2.23)
where the semicolon stands for a covariant differentiation with respect to the metric
(2.2). Therefore, when d > 4, we may, without loss of generality, direct the normals
nb and nf along two mutually orthogonal space-like vectors z;‘fn and a:;‘ao respectively:

nh ~ :cffn, nh ~ :c‘:;m. As a result, the coeflicients of the second quadratic form (2.11)
become equal

ba|oo =y "Jf?oo byo) =0 (2.24)

0 a=4,5...,d-1

alij =

With the latter equalities, equations (2.21) for & = 4,5,...,d — 1 are identically
satisfled, and for o = 2,3 take the form

(14 63(7))2k0(7,04(7)) = 0 465(r)alp (1, 0,()) = 0

whence, owing to {2.23), we oblain equations (2.22) and, setting o, = (0,7), the
conditions

3:;200(7',0) = T?OO(T:- TI') = 0. (225)
The 2(d — 2) functions f (u%) and y,(u™), &« = 2,3,...,d — 1 remaining upon

gauge (2.19) will obey two conditions (2.25) and 2(d — 4) relations (2.24) when d > '4,
and also two projections of the boundary conditions (2.18) on the tangent vectors z¥
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and ##. For projecting it is convenient to employ the conditions (2.5) that with the
use of (2.22) may be written in the Torm

i#(r,0) - Einr0) = LViTer(r,0)  o=0
z my
#rm - Civrm < - LVFirrm)  o=m (2.26)
2

Taking advantage of the conformal gauge (2.3) and equations of motion (2.4) it is
easy to show that the projections (2.26) onto £#(r,o,) vanish, and projections onto
£# (7, 0,) give the equations

/
L a=12 (2.27)

s(_1 ) .
do (\/:i:?(r, a))|a=a B m,

For the case of a three-dimensional Minkowski space the functions fz(u"') = f(ut)
and g,(u™) = g(u~) in expansions (2.8) should obey two equations (2.27). For the
d = 4 case equations (2.27) are to be supplemented with two conditions (2.25) for
four unknown functions f {u%),g.(4™), « = 2,3 from expansions (2.8). Finally, for
the general d case in addition to {2.27) and (2.25) there are 2(d — 4) equations (2.24)
with d > 4. Thus, the dynamics of the relativistic string with massive ends in the
Minkowski space E}_| is described by the system of 2(d — 2) equations (2.27), (2.25)
and (2.24) with d > 4 being more complicated with growing dimensionality d of the
spacetime E}_,. Therefore, it is natural at first to examine the simplest equations
from this list, equations (2.27), in the case of propagation of the relativistic string
with massive ends in a three-dimensional Minkowski space E}.

3. Equations for trajectories of a string with massive ends in a three-
dimensional spacetime

Let us dwell upon the case of a three-dimensional spacetime E% when coordinates
(2.6) of the minimal surface of a relativistic string with massive ends in the represen-
tation (2.8) and gauge (2.19) are defined by two functions f(ut) and g(u~) that obey
the boundary conditions (2.27). Inserting the general solution (2.9) of the Liouville
equation (2.10) into (2.27) we oblain the system of two delay differential equations for

P TR N SR T S (R Y U
LNe IUncuions j{7) ait §i7)

d g(r) LSO+ v, W) =gl
5o In 2 Yir) = glr)l .
oG ml \/j (Mg (7) (3.1)
d, ¢t -2m) J+ylr-2x) v, fr)~g(r - 27)
dar " f(7) * fr)—glr—2m) = 14 (g (r—2m) (3:2)

For my = m, = 0 the system of (3.1) and (3.2) has periodic solutions g(7) = f(r),
f(r) = f(r + 2x) that according to (2.9) violate the minimality condition (2.16) at
the points ¢ = o, @ = 1,2, and conversely, if one of the functions, either f(r) or g(7),
is periodic, the other is also periodic and m; = m, = 0. Therefore, periodic solutions
to equations (3.1) and (3.2} can exist onty for a massless string TS]

Qg
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The system (3.1} and (3.2) respects invariance under the same Mabius transfor-
mation of the functions f(u*) and g(u~)

z tf(ut)+b
fah =S g

which corresponds to the relativistic invariance of the underlying string theory. In
fact, it is easy to see that the Lorentz transformations of vectors ' and, according to
{2.8), the vectors of the isotropic basis {e, el , €)'} as well, induce the transformations
(3.3) of the functions f(u*) and y(u™). Therefore relativistically invariant expressions,
for instance (2.9), in terms of the functions f(r) and ¢g(+) should be invariants with
respect to (3.3).

Now let us demonstrate that the minimal surface of the string is fully defined
by the world trajectories z#(r,0,) of its niassive endpoints. To this ends, for d = 3
we shall describe the trajectories in terms of geometric invariants, curvature k, and
torsion k.. As is well known [9}, these characteristics uniquely define a curve in a
three-dimensional space up to ils position. In the general the curvature of a curve
z#{r) in the pseudo-Euclidean spacetune is given by the following expression [9]

; u]}’

Substituting the left-hand side of equations (2.26) for z#(r, 7.}, a = 1,2 into this
formula and using the conditions (2.3) we obtain

L .
k, = md a=1,2. (3.4)

-) = ag{u”) +b

= ola) 1 d ad—bc=1 (3.3)

Torsion of an arbitrary curve z#(7) in the pseudo-Euclidean spacetime is defined
as 9]

. PPN -
ik

,uua
k(T =
(r) = (22)? — 223
Differentiating equations (2.26) with respect to 7 and inserting the expressions for
&*(r,o,) and :'L"P('r, o,) a
written as

= 1,2, the torsions of the trajectories 2#(r,o,) can be

AV o

Epg il EE Ly
¢ (1) = F——— 1=
W)= EE ey Th

which, owing to the definitions (2.11) and (2.13) and condition {2.21), are reduced to
the form
A

= =1,2. 3.5
K,(T) Pro] a=1,2 (3.5)

Substituting #*(r, &) fromn (2.9) into {3.5) we obtain the expressions for torsions

oy = AL (T 6
{0 = A7) - o F &)
Af'(r)g'(r - 27)
A[f(r) — g(r = 2m)]?

Kyt —7m) = (8.7)
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invariant under the transformations (3.3).

Formulae (3.6) and (3.7) together with equations (3.1} and (3.2) allow us to express
the functions f(r) and g(7) in terms of the torsions «,(7) as follows. Calculating from
(3.6) and (3.7) the differences of the functions

1 _ VAR () 1 _ Ary(T — )
Fir) —a(m)  2/F(Pg'(7) f(r)—g(r=2m) 2/ (r)g(r — 27)

(3.8)

and then inserting them into the boundary conditions (3.1) and (3.2) with allowance
made for (3.4), we get

d. ¢) PR B FACO N GO W

3 ") TevARD (\/ s T f’{r)) =y

d, ¢(r—2n) ] 7(7) g'(r —27)

e In -_W + €94/ Akiy{T — 7)) (\/{]'(T —27) + J 7(r) ) (3.9)

A
R ey

where ¢,, a = 1,2 are the signs of the products f/(7)[f(7) - ¢(r)] and f/(r)[f(r) —
g{t — 2n)], respectively. Taking the logarithnn and differentiating with respect to 7,
formulae {3.6) and (3.7) willi the use of {3.8) are transformed to

PPN ywaed (8 10 NN PG A BTG
d‘rl (fi(r)g'(T)) - e\ /A l.(T)( 9(r) ff(.r)) %y (7)

AN oy P fiiry  [g'(r —27) (3.10)
ar M) (T = 2m)) = ey Anl )(\/Q'(T—Qi‘r) \/f’(r) ) g

_ ky{T — )
Ko(T —m)

The sum and difference of (3.9) and (3.10) give the following system of equations for
the first boundary

[ 4 d 1 A ] 1 1

*ar ” ”‘(7)3?( m(r))"“ 0 | Vi - VAR TS
1
(1)

—€
e1y/ Ary (1)

7S

r2£-— ()(_1 1 +h A L
S VR \ T TR e [ Ve T

(3.11)
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and for the second boundary

dr ’ dr | Vs(7 — 7) NV oralr =) | ()
= - Ko(T — T _1
€31/ Ary( ) 7t = 27)

d d 1 [ A
[23? Y alr - ﬂ.)a; ( Kol — 71')) ks Ko(T — )

= g/ Ars(T — w}ﬁ.

Finally, eliminating 1/\/f'(7) and then 1/+/¢'(7} from (3.11) we arrive at the equa-

tions which connect f{r) and y{r) with the torsion x,(7)

o) = o ([ A an) + 242 (1 L) —an, 2 2
D(g(r))=D (/T \/Aul(n)cir)) 4 Hl‘:ﬂ (1 - Nf(i)) + QkI% :_]i?;j

(3.12)
1

V'(r —2m)

(3.13)

1

The same procedure applied to equations (3.12) allows us to express f{r} and g{7—2)
in terms of &,(7) as follows

D(f(r)) = (f mdn) T""?f)

ks ., d A
% (1 B rc%(‘r— 71'}) + M?F Ko{T — )

D{g(r — 2m)) ( j \/md”) )

ks L, d A
X (l B KT - n)) - M"’:l—; wy(r —m)

In formulae (3.13) and {3.14) we made use of the Schwarzian derivative

_ M) s 1) —— 1
by =L@ (IO - e (———f,m). .15

Thus, the functions f(7) and g{(r} and therefore, according to (2.6) and (2.8), the
string coordinates z# (7o) are completely defined by the torsions (1), a = 1,2 of the
world trajectories of massive string endpoints.

Eliminating D{f) and D(y) from the four equations (3.13) and (3.14) we obtain
for the torsions x_(7), a = 1,2 the following two delay differential equations of second

()

(3.14)
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order

D(f(r))=D (/'T \/md’l) +£’1'-£‘:l (l _ :?L_(%) —lead; K:?T)
v (]T\/md,}) +i’r_2_—_7_r_)

k2 .d A
(1= rm) e 7 19
T . K (1) k2 d A
U amtan) + 52 (1= 285) + 2037
D (/T v/ Akq(n + w)cl:;) + Eg-(-%i—?r-)-

3 L, 4/ A
X (l—w) —2)'»-_,-('[—1'_- m (317)

Thus, in the framework of the geometrical method, the classical dynamics of the
relativistic string with massive ends in the three-dimensional Minkowski space E} is
described by two delay differential equations of second order (3.16) and (3.17). This
system 1is of fundamental importance in searching the world surfaces of a relativistic
string with massive ends in the ambient three-dimensional space E}. Specifically, it
follows from these equations that inside the interval § < 7 < 7 the torsions «,(7) are
arbitrary functions and in order to specify uniquely a solution of equations {3.16) and
(3.17), they should be fixed there as the initial data by the choice of the initial position
z#(0, o) and initial velocity (0, ¢), 0 < ¢ < 7 of the string [6]. Continuation of these
functions cutside the interval 0 < T < 7 is made by the integrals of equations {3.16)
and (3.17), so that two conditions of stoothness at the points 0 and # for the continued
functions k,(7), ~o0 < 7 < 400, may always be fulfilled with the four arbitrary
constants.

The simplest solution to equations (3.16) and (3.17) are constant torsions &,(7) =
Ky, when the ends of the string are moving along helices obeying the following condi-

tions [6]
5 £
£ (1 - ’.21 ) = Koz (1 s ) : (3.18)
vl ‘oz

In this case we obtain from equations (3.13) and (3.14) the equalities
D(g(r)) = D(J(1)) = D(y(r — 2m)) (3.19)

whence, as explained in [10], it follows that the functions f(r}, g(7) and g{r — 2r) are
related by the Mobius transforinations

o(7) = a flr)+ 8 - aqg(r —27) 4+ 3,

TS(7) 48, gl —2m) + 8,
The constant coefficients in (3.20)—uw,, 8,, 7, 9,—obey the normalization conditions
a6, — 8,7, = 1 and two relations following from the boundary conditions (3.1) and
(3.2). The world surface a#(7, o) of the relativistic string with massive ends turns out
to be a helicoid in the three-dimensional space £} [6].

I

]

D(g(m)) =

1l

(3.20)
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4. Trajectories with periodic torsions

It turns out that the system of (3.16) and (3.17) possesses smooth periodic solutions
K (1) = kg (T + 2m). (4.1)

In fact, with the use of (4.1) we may write the sum and difference of (3.16) and (3.17)

in the following form
7} kN T
(1-565) =2/ v“z("”)dn)

o[ i)

PC?(T"I"‘TF) _ k?’ ) i,
+ = (1 e (4.2)

d A A
ir (kl\/m + Lg\/m) = 0. (4.3)

From (4.3) one finds the integral of motion

kl k? . k2

) | JerEn

where k? is an arbitrary positive constant. Note that relations (4.4) contain only one
arbitrary constant k% so that the smoothness of the curves x,(7) continucd outside the
interval ¢ < 7 < 7 cannot be guaranteed. In this case the equalities (4.1) and (4.4) may
give rise to discontinuous solutions for 1 {7) over the whole real axis —00 < 7 < 400,
which are not considered here.

In the class of smooth functions we find for the torsions x,(7), @ = 1,2, in the
interval 0 < 7 < &, the following representation

(4.4)

1 k¢
VE(r) k) A+ kylp(T)] (45)
1 _ k()] ‘

Vel(rEm) k4 kylp(r)]

which makes (4.4) an identity. ‘T'he real-valued function p(r) is defined by equa-
tions (4.1) and (4.2). Let us show that p(r) is periodic p() = p(7 + 27), and can be
extended smoothly to the whole real axis 7. Inserting (4.5) into (4.2) we obtain the
second-order differential equation for p(7)

tl 1 k ;]J(T)l 2
p(r)p"(r) - [§ + m] p(7)

! [(I}z(f) = Dy + Eofp(mD®  KpP(r)(ky = kolp(7)])
2 ki (k1 + kslp(7)))

+ =0. (4.6)

The substitution

pA(r) = ¢(p) (4.7)
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changes (4.6) to a first-order equation for the function ¢(p), and integrating the latter
over p we obtain

8(9) = ¥(r) = 2Dk, 4 ko)) B0(0) 48)
where

Alp) = p*(r) — 20p(7) + | (4.9)

and p is the integration constant. Now the function p(7) is defined by (4.7), the right-
hand side of which, (4.8),is a polynomial of the fourth degree in p(r) with real-valued
coefficients and positive ¢(p) = w?(p) > 0 for real p(r). After putting p(r) = 0 (4.8)
becomes w?(0) = ~k?/k* < 0, whence it follows that p(7) takes values either on the
half-line p(r) > 0 or on p(7) < 0. The latter in turn ensures that the coefficients of
polynomial (4.8) are fixed 11 sign.

As is known [12], the solution of equation (4.7) can be represented in terms of
elliptic functions with periods 2w and 2w’. To this end, for simplicity we consider the
case of equal masses at the string cnds, m; = m, when, according to (3.4) k; = &y,
and one puts k? = k,|q], where ¢ is an arbitrary constant, and E = 2[1 + ¢(p)pl,
¢2/4+ E > 4. In this case the elliptic curve (1.8) has two mutually inverse real-valued
positive roots

1+ VT—4x .

- , = 4.10
2 1 — m Po = Dy ( )

where

7 2 2
)= E+ /L2 + 4y U< A<

242

-hlr—-

With the use of (4.10) the solution to equation {4.7) may be represented as follows

{éf(lf’l)/q][;.ﬂ;]:pl
{53(7) - [tﬁf‘(lpl)/‘zq]lplzpl} .

lp(r) = py + (4.11)

Here p(r) = 9(7,¢5,95) is the Welerstrass function with real period 2w and pure
imaginary period 2w, g, and g4 are real-valued invariants of the polynomial (4.8),
g5 — 27¢2 > 0. In the interval 0 < r < w, when ¢) < g(7) < 00, where

e, = plw) = ler‘r| (¢ +2£) >0 (4.12)

by virtue of ¢; > [¢"(1p])/24]),,,,, the function {4.11) is smooth and monotonically
decrea.slng from a maximum [p(0)] = p, at point r = ¢ down to a minimum [p(w)| =
Py, = Py at point ¥ = w and has at most three points of inflection. In accordance

with the properties of the Weierstrass function [12], outside the interval 0 < 7 < w
the function {p{r)| continues with peried 2w in an even manner

(=) = 1p(7)] (4.13)



2456 B M Barbashov and A M Chervyakov
and to the whole real axis 7 pericdically with period 2w
[p(r + 2w)| = p(r)]. (4.14)

The lines p, and p, = p' are envelopes of the curve (4.11).
Thus, formula (4.5) supplemented with (4.11}, according to {4.13) and (4.14),
defines the torsions £ (7) as smooth 2w-periodic even functions

K, (—7) = £,(7T) K (T + 2w) = K,(7) ’ (4.15)

for all real values of the evolution parameter r. To fulfil equalities {4.1), the real
half-period w of the function (4.11) is to be fixed at 7 that results in the following
condition on the arbitrary constants p and ¢

[+
u:/ 4 . (4.16)
€] \f4“j—ggi—g3

The properties of torsions, (4.15) and (4.16), together with expressions (3.5) for
the metric-tensor component of the string world surface (2.3) imply

£2(~1,0,) = 2}, 0,) i3 (7 427, 0,) = %1, 0,) a=1,2 (4.17)

To close this section, we note thal, in the m; = my case, the motion of the string
ends proceeds along similar curves with &, = &, and x,(7) = k(7). In fact, the
function (4.11) obeys a simple rule of addition

lp(r £ 7)| = }p(lr)l' (4.18)
Substitution of (4.18) into expression (4.5) for 1/k,(7) gives

wlr) = 1 [+ B = () (4.19)
whence with (3.5), it follows that

&2(r,0) = &*(r, 7) (4.20)

which is none other than the equality of lengths of trajectories of the masses in equal
intervals of r :

T2 T2
I, = f Vi, 0)dr = / VEi(r, mydr = 1,
Ty T1
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5. Definition of the string world swrface

We shall define the functions f(r) and ¢(r) from equations (3.13) and (3.14) taking
into account that their right-hand sides are periodic owing to (4.1). Therefore the
left-hand sides of these equations, i.e. the Schwarzian derivatives of the functions f{7)
and g{7), are periodic as well, D(f(r)) = D(f(r + 2n)), D{(g(7)) = D(g(7 + 27)),
whence, as explained in [10], it [ollows that

_af(r)+b
Tef(r)+d

The coeflicients of these Mdbius transformations are taken to be the same so that the
torsions (3.6) and (3.7) obey the condition (4.1). Specifying b = ¢ = 0 and a = d,
from (5.1) we obtain the periodic functions f(r 4+ 27) = f(r) and g(r + 27) = g(r)
corresponding to the case of the inassless string.

In the general case, the real-valued pairs of solutions (f(7), ¢(7)) and (f(7 + 27},
g{t + 27)) for (a + d) > 2 have either onc or two points of intersection given by the
equation

ag(r)+b

flr+27) o+ d

g{r + 27) = ad —be = 1. {5.1)

F(f)=ef*{r)+(d—a)f(r)—b=10 (5.2)

whereas for (a + d) < 2 they do not intersect at all. With (5.1) the expression (3.7}
for ky(7 £ ) assumes the form

Af'(r)g'(7)
[(af(r) + by — g(r)(cf(r) + d))*
Expressing 4f/(r)¢'(7) in terms of 1 (7) from formula (3.6) and inserting it back into
(5.3) and using the notation »,(7)/s,(7) = p*(r) we arrive at the equation quadratic
in g(r)

Ko(TET) = 3 (5.3)

PAS(r) — a(m)) = [(af(r) +b) — g(r)(cf(r) + D)% (5.4)

Two roots of this equation correspond to two different choices of the sign of function
p(7) and can be written as a comnon expression

GG,
e (r) + (d = p(r))

whose coefficients, in contrast to the case of constant torsions (see formula (3.20)),
depend on r and form a matrix with the detenmninant

9{7) ad —be =1 (5.5)

A=p(r)—{a+dp(r) + 1. (5.6)
Comparing (5.1) with (5.5) we get the equality

ag(r =27) + b  (a—p(r))f(r) + 0
cg(r —2m) +d — ef(r) +(d = p(7))

g(r} =

whence it follows that

o T = () + b
S e e pri) &.7)
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Substituting (5.5) and (5.7) into formulae (3.6) and (3.7), respectively, and changing
&,(7) and &y(r £ 7) by the expressions (4.5) we obtain the equation

FON ki + kylp(r)])?
a0 (57) - (F7) - 5 = (58)

that defines the two-valued function (f'(7)/F(f)) in terms of p{7) and p'(7) as follows

£1(r) _ P £ Vo) + Ap)(ky + kylp(r) 2/
F(f) 2A(p)

Using (5.5), (5.7) and (5.9), it is easy to show that the boundary conditions (3.1)
and (3.2) reproduce equations (4.7) and (4.8) with the constant p expressed in terms of
the coefficients of transformation (5.1). Inserting (5.5) and (5.7) into equations (3.1)
and (3.2} we represent their surn and difference in the form

(5.9)

4, P(J) VN i G4 B 1 C))
210 [a) =P (1T - ) - B - 22
(k, — k(7))
5.10

T VAU OIFN - P OT OFD) (5:10)
2[p'(r) = 28} (T)/FUD} _ (ky + kylp(7)]) Ga))

p(7) VAR FINYE = (O (N/F ()
Substitution of (5.9) into (5.11} gives

s \Jr0) + Sk, 4kl = R (5.12)

where the sign of the root is determined by that of the function p(7). After comparing
(5.6) with (4.9} and identifying

Zp=a+d (5.13)

(5.12) is easily recognized as (4.7). Upon substitution of (5.9) into (5.10) the latter
takes the formn (4.6) and is also reduced to (4.7) and (4.8). Thus, the function p(r)
with (5.13) is defined by the representation (4.11).

Using (4.11) we now deterruine the functions f(r) and g(r). Owing to {5.12) the
expression (5.9) assumes the forimn

A7) _ p(r) = k)

= 5.14
R~ a0 ¢4

To express the function g(7} in terns of p(7) we consider the relationship
g'(r) _ y'(7) (5.15)

Glg) ~ eg?(r) + (d - a)y(r) -
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Substitution of expression (5.5) and (5.14) into (5.15) gives

¢(r) __p(r)+ k() .16
¢@ =7 2B (510)
Integrating (5.14) and (5.15) we get
SO T p(7) A
= J(r).
/ F(f 2/ /_\(p 2 (r) (5.17)

“ 4y M 4y K
/ Tl = 5/ ORI

Here the integrals are depending on the conditions |a+d| > 2, ja+d] = 2or |[a+ d| < 2
performed in terms of the same elementary functions since the discriminants of poly-
nomials (5.2}, (5.15) and (5.0) coincide, and the elliptic integral

In(7)i 1
_ pdp
J(ry= /p; AT {5.18)

with the use of (4.11), is split into a sum of normal elliptic integrals of the first and
third kind. Solutions (5.17) should be periodic up to the Mdbius transformations
(5.1). The latter may, depending on wlether ja +d| > 2, [a+d| = 2 or Ja + d| < 2,
always be reduced either to the hyperbolic, or parabolic, or elliptic form respectively
by Mobius transformations (3.3) (see, e.g., [10]). Then inserting (5.17) into {5.1) with
(4.13) leads to the constraint on arbitrary constants a +d and ¢

eI AEL ) = R+ ) (5.1

in addition to (4.16). Here @ is a real period of the integral (5.18), and a funection
R depends on the choice of parametrization of the coeflicients in (5.1). Finally, the
coordinates z#(7, o) of the minimal surface of the relativistic string with massive ends
are given via expressions (5.17) for the functions f(r) and g(7) by formulae (2.8) and
(2.9).

6. Conclusion

in this paper, it has been shown that the world sheet of a relativistic string with
massive ends is completely defined by trajectories of its massive endpoints. In a
three-dimensional Minkowski space EJ these trajectories are characterized by two
geometric invariants, a constant geodesic curvature and torsion that is generally a
function of the evolution parammeter 7 on the string surface. When the torsions of
these trajectories are constants, our approach allows us to reproduce a well-known
exact solution describing the rotation ol a straight-line string with massive ends in a
given plane [4-G]. In this case the trajectories of motion of the massive endpoints turn
out to be helices and the surface is a helicoid in £]. It is worth mentioning that the
helicoid is the only non-trivial minimal surface belonging to the class of ruled surfaces
generated by the motion of a straight lines in a space. Therefore a solution of that sort
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does not describe transverse excitations of the string and hence does not contribute
to the linear behaviour of the static potential between quarks at long distances.

The new sclution we have found here describes a more intricate motion of the
string when the massive endpoints moving along the same world trajectories with a
constant curvatures and a periodic torsions, In this case the string world surface is
not a helicoid and does not belong Lo the class of ruled surfaces, therefore it describes
transverse excitations of Lhe string and, according to [11], radial motions of the mass.
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