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New formulation of the classical dynamics of the relativistic 
string with massive ends 

B M Barbasliov and A M Chervyakov 
Laboratory af Tbeoreticd Physics, Joint Indtute for Nuclear Research, SU-141980 
Dubna, USSR 

Received 24 September 1990, iii final fortn 5 Mardl I991 

Abstract.  Dynamic equalioiiS in  the theory ofa relativistic string with point maoses 
a1 the ends hie Comatlated only terms of geometric invariants of the world traject- 
Ties of the iiiassive entls 01 t l x  string (curvature k, aid torsion of the trajectories). 
There characleristics allow us CO reproduce  be string worldsurface up to its position 
in Minkowski space E;. Tlie mrsions sa(.), n = 1 ,2  obey a Eystem of second-order 
differential equations w i t h  &lay describing the retardation effects of the interaction 
of inasses tlirougli the string. llie ha being constants. A new particular solution to 
these eqiialiona is found that corresponds to periodic torsions. 

1. I n t r o d u c t i o n  

A dynamic basis for the liadroii iiiodcl is the relativistic string with massive ends (for 
a review, see [l]). Until now 110 general solutions have been derived for the equations 
describing the dynamics of 1.liis syst.rrii, tlierdor(> i t .  seems of interest to consider a new 
mathematical formulation of t,tial. Iirobleni wlricli would promote the investigation of 
its dynamics and the derivalion of new exact solutions. 

The action functional for a relativistic string with point masses a t  the ends results 
in equations of motion of the string and in boundary conditions that physically repre- 
sent the equations of motion of two niiwses interacting through the string. An analogy 
arises between this system and classical electrodynamics with charges in which the field 
is described by Maxwell equations witli charges and the dynamics of the charges in- 
teracting with the field is given by the Loreiit,z equations. Wheeler and Feynman [2], 
considering the actioii l,o propagat,e at, a distance with a finite velocity, have eliminated 
the field variables from tlie eqiiatioiis of motion in electrodynamics, and have formu- 
lated the interaction between cliargrs i n  ternis of retarded and advanced propagation 
functions when there is no alnorpl,ioii and emission of the electromagnetic field. 

For a system of a relal.ivistic. s(.riilg with niasses at tlie ends we may also utilize the 
principle of action at  it disteircc to eiialAe 11s to find equations of motion in terms of 
the characteristics of the trajectorirs along which tlic masses are moving provided the 
string variables are elimiiiarcd. 11, i 3  clear that ,  as t,lie problem is relativistic, it cannot 
be formulated within the eqiial-tiine formalism. In the simplest non-relativistic limit 
we arrive at a system of two niasses coupled by a linearly rising potential [3]. 

In this paper, the classical dynamics of the relativistic string with massive ends in 
the &dimensional Minkowski spacetime El-l is reformulated in terms of the geometric 
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invariants of both the string world sliect and the world lines of the point masses a t  
the string ends. III  the d = 3 case that we  will examine here in more detail for 
simplicity, the string coordiiiates P(.r, U )  as functions of parameters T and a are 
completely defined by the constaiit curvatures k, connected with the masses and the 
string tension and the torsions K, , ( r ) ,  n = 1,2 of the endpoint trajectories which are 
subjected to a system of sec.ond-order delay differential equations that takes account 
of the retardation effects of the interaction of two point masses through the string. 
' Ihe weii known exampie i4-6j of the straight-iine string with massive ends rotating 
in a given plane corresponds to  a particular solution of this system with the constant 
torsions K , ( T )  = liOa, n = I ,  2 w h t v  thr string ends are moving along the helices. In 
this case the string world sheet is a helicoid [GI i n  the three-dimensional spacetime E:. 

In addition, a new exact solution is also found for the periodic torsions c,(r+2?r) = 
K O ( . ) ,  a = 1 , 2  which are given by the Weierstrass function with a real period propor- 
iionai to is and a pure imaginary period 2w'. Tile string coordinates are expressed 
in terms of normal elliptic integrals and describe a more intricate motion than the 
rotation of a stretched string i n  a given plane including its transverse vibrations. Just 
such motions ought to be considered i n  the string model of hadrons for the calculation 
of the contributions to the linear behaviour of the static interquark potential a t  long 
distances [7]. 

In section 2 the geometric approach to tlie classical dynamics of the relativistic 
string wit,h massive ends is formulated i n  the Minkowski space for any spacetime 
dimension d .  Section 3 is devoted to the derivat,ion of equations for trajectories of the 
massive string endpoints iii the t,liree-dimensional spacetime E:. In section 4 the 
exact solution of these equations is oht~ained in the c.ase of periodic torsions and the 
corresponding string world s u r f x e  will he constructed in section 5 .  Section 6 contains 
some conc!nsions. 

B M Barbuslroo and A M Chervyukov 

_. 

2. Equations of iiiotioii niid boundary coliditions 

Consider the dynamics of a relntivist~ic string with point masses ml and m2 a t  the 
ends. The world sheet with coorditiates d ' i u ' ) ,  1' = 0, i ,  . . . , d - i ,  i = 0, i swept out 
by the string in the d-diinensional Miiikowski spac.etirne EA-, is an extrema1 of the 
functional of tlie action [I, 61 

where the first term is the actioii of a massless relativistic string, 7 is the string 
tension, ui = ( r ,  a )  are parameters on tlie string world surface, and the derivatives 
are as follows 
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The motion of the string endpoints i n  the plane of t,he parameters r and U is described 
by the functions ua(r), a = 1,2. As for a niassless string, the action (2.1) is invariant 
under non-degenerate changes of variables, i = i(r, U )  and 5 = 5(r, U ) ,  which allows 
us t o  eliminate any two of the three indrpendent components of the world sheet metric 

It is convenient to introduce isothcrmal coordinates r and U in terms of which the 
metric (2.2) is diagonal and traceless 

900 gl ,  = 901 = $10 = O' (2.3) 

hzs 

Variation of the action (2.1)  wit11 respect to x"(r,u) gives equations of motion 

?he flat Mir.kowski n;etric r;,,, of the eiiveioping d-dimenaiona: spcet ime 
the signature (+,-, . . . ,-). 

linear in the gauge (2.3) 

P ( r ,  U )  - +""( r ,  U )  = 0 (2.4) 

and nonlinear boundary rondil.ioiis at, t,liP stwing elids 

Varying (2.1) with respect to u , ( i )  we arrive at  the same equations (2.5), therefore 
the functions u o ( r ) ,  CL = 1 , 2  are not dynamical variables [SI. 

A general solution l,o tlie rquations of motion (2 .4)  and gauge conditions (2.3) is 
of ihe iorm 

Z " ( T ,  U )  = ~ [ $ ~ ( u + )  + +!(U-)] U+ = 7 + U ,  U -  = 7 - U  (2.6) 

where $;"(U*) are two isotropic vectors, 

$ I i U * )  = 0 (2.7) 

tangent to the string world surf;n d 8 ( T , u ) .  The conditions (2 .7)  may be satisfied if 
we represent $2 by t,he following expaiisioiis 



2446 

where the constant basis (e;, e: , . : }  is formed from two isotropic vectors e;, e:, e; = 
0,e: = O,(e,e,) = 1 and ( d  - I) space-like vectors ez,(e,ep) = -bep,(eOe,) = 
(elea) = 0, n = 2 , 3 , .  . ., d-  I .  'The representations (2.8) fully define the world surface 
of a relativistic string without lbounilary iii  a d-dimensional Minkowski spacetime E:-, 
and allow us to construct its basic iliiailratic. forms. 

The expression for metric. tensor (2.3) can be obtained by inserting (2.8) into 
goo = z2(r,  U )  = $(d~!, .(u~).d4(ti-)) .  Iii the three-dimensional spacetime E: with 
d = 1 t 2 and f2(uf) = f ( u C ) ,  g 2 ( u - )  = g(zi-), for example, the latter looks as 
follows 

B M Barbasliou arid A M Clieruyakou 

As is known [l], in the d = 3 case the Gauss equation for the world surface of the 
relativistic string zl'(r, U )  redii~es t,o 1 . 1 1 ~  Liouville equation for goo = x2(r ,  U )  

(2.10) 

and (2.9) is the general solution to this equation. 
Computation of the coeflicients of llie second fundamental form 

requires a special choice of the orl,lioiiorinalize(I system of (d  - 2) unit normals n: 

which together with taiigent vectors i" aind 5'' coiistitute a moving frame of reference. 
This can most easily be i loiie lor t.lie d - 1 = 2 case when the field of normals (2.12) 
contains only one vector ni'(u+, U-)  t.lint rnay be c.onstructed in terms of the vectors 
ZJ' and z?' as follows 

[i x 4 
r : ' ( a + ,  a- )  

l l y l i + , u - )  = .. (2.13) 

where [i. x it] = ~ ~ ~ ~ , , k " i ~ ,  and E)'""  is a t,ot,ally antisymmetric unit tensor. Inserting 
the relations (2.8) with d = :l i n w  (2 .13 )  and taking into account that [eo x e , ]  = e2, 
[ e ,  x e2] = - e l ,  [eo x e2] = eo we iirrive at the expaiision of the normal n p  over the 
isotropic basis (e!, e : ,  e t }  

Using theexpansions (2.8) with d = 3 and (2.14) for coefficients of the second quadratic 
form b21y = b i j  of the string world surface # ( r ,  U ) ,  according to (2.11) we obtain 

(2.15) 
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The first equality of (2.15) shows thal, tire st,ring world surface belongs to the class of 
the minimal surfaces [9] because its i i iean curvatlire is zero 

(2.16) 

Here it is assumed that for any point of tlie string world sheet there holds the condition 

the condition 
of minimality (2.16) in the coordinate system (2.3) sh0111d be replaced by the relations 

- ;2 , n -- P t f " , + , , , ! , ~ , - ,  . ,I .._.,, I . , . . + ,  1 . _ I _ .  - >  ^ ^  '-̂ ,,̂ ...̂  r.-- ," "\ 
For an arbitrary dimensionality rl of the enveloping spacetime 

Boo - * , U V L  J (U \ U  ) 2 U nllU J ( U .  ) f y(U  ) N L U l l U W I  L l U l l l  ( L . 2 ) .  

For a relativistic string with iiiassiv~ ends Lire coordinates zp(r ,  U )  of the minimal 
string world surface obey tlie iroiiliirear I)or~~idary c.onditions (2 .5) .  Substituting (2 .6)  
into (2.5) for the isotropic v c c h s  ( 2 . 7 )  a i i d  funrt.ioirs o,,(r) we get 

- 
uf = r + u a ( r )  1 1 ~  = r - ua(r) 

For each of value n = 1 , 2 ,  oiily d - I of !,lie d equat,ions (2.18) are independent of each 
other since the projections of tlie systcin (2.18) orit,o the tangent vectors 

a = 1 , 2  

coincide. Thus ,  2 ( d  - I )  indcl~ci ideut equations of the system (2.18) contain, as 2d 
unknown quantities, t,wo furir.l.ioiis D,,(T) aiid 2 ( d  - I )  independent components of the 
___.._ isdrnnic r _ _  vert.nrs $2 expreasr~!, a<.cor&!!g to (2.81, t!!m!& ,Ai, f,, 8, which zp ,  a 
we see from the boundary conditions (2.18), fuuctions of U,(.). That  indefiniteness 
is a consequence of equations ( 2 . 7 )  arid (2.18) under conformal transformations of the 
parameters G* = & ( U * )  wlirre G * ( u * )  are two arbitrary functions of one variable. 
So, the definition of system (2.18) may be supplemented by imposing two auxiliary 
conditions which inwt dcpeird on one variable. Choosing tlre equalities 

A + ( t i t )  = A - ( i i - )  = A = ronshn t  (2.19) 

to be gauge conditions we will coiiiplct~rly tix t,lre coordinate system U' = ( r ,  U )  on 
the string world sheet. In tlirw d i ~ i ~ c ~ ~ s i o i i s ,  d = 3 ,  this choice of gauge has a simple 
geometric meaiiing. Indectl, lraving lixcd Ai( i i*)  according to (2.19),  the coefficients 
of the second quadratic forin l ~ , , ~ ,  = I i j  a t  rl = 3 (2.15)  become , .  

I,, = ( 1 1 1 )  = 0 I,,  = ( I $ )  = A .  (2.20) 

Geometrically [9], the conditions (2.20) mean that tlie isothermal coordinates (2.3) 
are a t  the same time the asyinpt,otic lines 011 the string world surface. 
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Let us show that, by making tlir gaugr setting (2.19) we can fix the functions ua(r)  
in equations (2.18). I n  fact, projecting (2.18) onto nornials ng, a = 2 , 3 , .  . . , d -  1 and 
taking account of (2 .6 )  and (2.1 I )  one finds 2 ( d  - I )  equations 

(1 + X ( r ) Y ~ , l a ~ ( ~ ~ ~ ~ ( r ) )  + 2 ~ a ( ~ ) b m p l ( r . , u a ( ~ ) )  = 0 (2.21) 

a = 2 , 3 ,  . . . ,  d -  I n = 1,2. 

In the d = 3 case wheii 71; = n", b Z l i j  = 6i j  equat.ions (2.21) with (2.20) reads 

ua(r) = 0 n = 1 , 2 .  (2.22) 

Consequently, the ua are constants and we put u1 = 0 and u2 = T. For d 2 4 from 
(2.21) we may also derive rqiiations (2.22) using the arbitrariness in choice of the 
field of normals 11: correspoiidiilg to t,lir group of transformations SO(d - 2). In fact, 
utilizing the expansions (2.8) for the vrrtors d$ we get 

(i*i')? = , $ J ( u * )  = -/I' *( 

which in the gauge (2.19) and i n  the illetric (2.3) imply  

x;oo + z;ol = -AS (2;"02;01) = 0 (2.23) 

where the semicolon stands for a covariant differentiation with respect to the metric 
( 2 . 2 ) .  Therefore, when d 2 4 ,  we iiiay, without loss of generality, direct the normals 
n; and ng along two mutually ort~l~ogoiial spac.c-like vectors and xfba respectively: 
n: - zfb,, ng - zfb,. As a rrsiilt., tlir coeflic.ient,s of the second quadratic form (2.11) 
become equal 

(2.24) 

b,lij=O n = 4 , 5  , . . . ,  d - 1 .  

With the latter equalities, eqiia1,ions (2.21) for a = 4,5,. . , , d - 1 are identically 
satisfied, and for 01 = 2 , 3  take 1 . h  form 

(1 + u~(r))~~ao(r,uo(~)) = o 4c+:(r)z;a1(r,u0(r)) = o 

whence, owing to (2 .23) ,  w e  obtaiii eqiiatioiis (2.22) and, setting ua = (O,n), the 
conditions 

~ ? ~ , ( r , o )  = r,,,(r,rr) 2 = U .  (2.25) 

The  2(d  - 2) functions f,(u+) ancl y,(u-), n = 2 , 3 , .  . . , d - 1 remaining upon 
gauge (2.19) will obey two couditiolls (2.25) and 2(d - 4) relations (2.24) when d 2 4, 
and also two projections of the boundary conditions (2.18) on the tangent vectors x' 
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a n d  i p .  For projecting i t  is convenieiit to employ the conditions (2.5) tha t  with the 
use of (2.22) may he  written ill the form 

Taking advantage of tlie conformal gauge (2.3) and equations of motion (2.4) it  is 
easy to show that the projeclioils (2 .2G) onto iJ'(r,ua) vanish, and projections onto 
a?'(r, u.) give the equations 

(2.27) 

For the case of a three-[litiieiisioiial Minkowski space tlie functions f2(u+) = f(uC) 
a n d  g z ( u - )  = g ( u - )  in expansioils (2.8) should obey two equations (2.27).  For the 
d = 4 case equations (2.27) are l,o bc snpplemented with two conditions (2.25) for 
four unknown functions Je( ,u+),gc,(u-) ,  n = 2 , 3  from expansions (2.8).  Finally, for 
t h e  general d case in addition to (2.27) and (2.25) there are 2(d - 4) equations (2.24) 
with d 2 4. Thus, the dyiiarnics of Lhe relat,ivistic string with massive ends in the 
Minkowski space EA-l is desc.rihed by the system of 2 ( d -  2) equations (2.27), (2.25) 
and (2.24) with d 2 4 being more cornplicated with growing dimensionality d of the 
spacetime E:-l, Therefore, i t ,  is natiir;il a t  f i rs t  to examine the simplest equations 
from this list, equations (2.27),  i n  the c.asc of propagation of the relativistic string 
with massive ends in a three-diirieiisioiial Miilkowski space E:. 

3. 
dimensional spacetiine 

Let us dwell upon the case of a tlirec-dimerisional spacetime E: when coordinates 
(2.6) of the minimal surface of a rclat,ivistic. string with massive ends in the represen- 
tation (2.8) and gauge (2.10) arc defined by two functions J ( u + )  and g ( u - )  that obey 
the boundary conditions ( 2 . 2 7 ) .  Inst.rt,iiig the general solution (2.9) of the Liouville 
equation (2.10) into (2.27) WP obl.iliii (.lie sysk in  of two delay differential equations for 
li'lc: , U , I L ~ I " I I S  , , , I  1,111, y , ,  I 

Equations for t r a j e c t o r i e s  of a striirg w i t h  massive ends in a three- 

. L A  1 L : - - .  <,-I  ^.._I . . I - ,  

For ml = m2 = 0 the systeni of (3.1) and (3.2) has periodic solutions g(r) = f ( r ) ,  
f ( r )  = f ( r  + 2a)  l l iat accordiiig lo (2.9) violate the minimality condition (2.16) at 
the points (I = uo,  CI = 1,2, and roiiversely, if one of the functions, either f ( r )  or g(r), 
is periodic, tlie other is also periodic a ~ i d  7111 = 7 f i 2  = 0. Therefore, periodic solutions 
to equations (3.1) a!!(! (:j.2) ciiii exist oiily for a inassless &ring [8]. 
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The  system (3.1) and (3 .2)  respec.ts iitvariatice uiider tlie same Mobius transfor- 
mation of the functions f ( u + )  aiid ~ ( i i - )  

which corresponds to the relativistic invariance of the underlying string theory. In 
fact, i t  is easy to see tha t  the Lorrntz transformations of vectors $: and, according t o  
( 2 . Q  the vectors of the isotropic basis (e: ,  e f ,  e!}  as well, induce the transformations 
(3.3) of the functions f ( u f )  and y(u-). Therefore relativistically invariant expressions, 
for instance (2.9), in terms of the fiinctions f ( r )  and g(r)  should be  invariants with 
respect to (3.3). 

Now let us demonstrate Lliat the iiiiniinal surface of the string is fully defined 
by the world trajectories ~ " ( 7 ,  U,) of its ntassive endpoints. To this ends, for d = 3 
we shall describe tlie t,rajcct,ories i i i  t,crnis of geometric invariants, curvature k, and 
torsion K,,. As is well I~IIOWII [Y], I,Iiese c1iar;xteristic.s uniquely define a curve in a 
three-dimensional spare u p  to its posit,ioii. 111 the general the curvature of a curve 
z"(r )  in the pseudo-Euclidean spacetitne is given by the following expression [9] 

Substituting the left-hand sick of equations ( 2 . 2 6 )  for z"(T,  ua) ,  a = 1 , 2  into this 
formula and using the coiidit,ioiis (2.3) we obtain 

Torsion of an arlrit,rary curve d ' ( r )  i i i  the pseudo-Euclidean spacetime is defined 
as [91 

Differentiating equations ( 2 , X )  wit,lt respect to r and inserting the expressions for 
z"(r,u,) and x'(r, U"), a = 1,2.  the  t.orsioiis of the trajectories z"(r ,ua)  can be  
written as 

which, owing to the dclinitiolts (2 .11)  ~ i i d  ( 2 . 1 3 )  and condit.ion (2 .21) ,  are reduced to 
the form 

It = 1 , 2  A 
KO( . )  = . Z y r ,  U,,)  

(3.5) 

Substituting i z ( r ,  U " )  from (2 .9)  into (3.5) we obtain tlie expressions for torsions 

(3.7) 
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invariant under the transformations (3.3). 
Formulae (3.6) and (3.7) t o g e l h r  with equations (3.1) and (3.2) allow us toexpress 

the functions f(r) and g ( r )  i n  terms of the torsions tia(r) a~ follows. Calculating from 
(3.6) and (3.7) the differences of the functions 

and then inserting them into the boundary conditions (3.1) and (3.2) with allowance 
made for (3.4), we get 

(3.9) 

where E , ,  a = 1,2  are the signs of the iproducts f’(r)[f(r) - g(r)] and f’(r)[f(r) - 
g(r - Zn)], respectively. ’fithiug tire logarit11111 aiid dilferentiating with respect to r ,  
formulae (3.6) and (r3.7) wil,Ii tlw i ise of (3 .8)  are transfornied to 

d 
dr 
- l n ( f ’ ( ~ ) g ’ ( ~ ) ) - ~ ~  

The  sum and differenc.e of (3.9) iuid (3.10) give the following system of equations for 
the first boundary 

(3.11) 
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and for the second bonndary 

B M Barlnsl iuir m i d  A M Cli~rreruynkov 

Finally, eliminating l/m and t , l i ~ i i  l/m from (3.11) we arrive at the equa- 
tions which connect J ( r )  aiid g ( r )  wil.li the torsioii t i I ( r )  

The same procedure applied to eqiiat.ions (3 .12)  allows us to express f ( r )  and g ( r - 2 7 r )  
in terms of K ~ ( T )  follows 

x ( 1 -  t i ; ( .  - R )  ) +.+? K 2 ( T  - R )  

In formulae (3.13) aiid (3 .14)  w r  i i iadc use of Scliwarzian derivative 

(3.14) 

(3.15) 

Thus, the fniictions f ( r )  and g ( r )  iiiid therefore, according to (2.6) and (2.8),  the 
string coordinates ~ ' ( T c T )  art!  coi i ip let ,e ly defined by the torsions ~ ~ ( r ) ,  a = 1 , 2  of the 
world trajectories of iiiassiw sttritig eiidpoints. 

Eliminating D ( J )  and U ( ! / )  f ro~ i i  tlic four eqnations (3.13) and (3.14) we obtain 
for the torsions K , , ( T ) ,  (I = I ,  2 t l ie following LWO delay differential equations of second 
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order 

A 
ti2(. - r) x (1- (3.16) 

(3.17) 

Thus, in the framework of the geometrical nrethod, the classical dynamics of the 
relativistic string with massive ends i n  the three-dimensional Minkowski space E: is 
described by two delay differenl.ial eqiiations of second order (3.16) and (3.17). This 
system is of fundaniental irnport.aiice i n  searching the world surfaces of a relativistic 
string with massive ends iri tlie ambient. tliree-dimensional space E:. Specifically, i t  
follows from these eqiiatioiis t,liat inside t.lie interval 0 5 T _< 7r the torsions ~ ~ ( r )  are 
arbitrary functions and i i i  order to spec.ify uniqiiely a solution of equations (3 .16)  and 
(3.17), they should be fixed there as tdic initial data by the choice ofthe initial position 
~ ' ( 0 ,  U )  and initial velocity i:"(U, U ) ,  0 < U < r of t.lre string [GI. Continuation of these 
functions outside tlie interval 0 < r < r is made by the integrals of equations (3 .16)  
and (3.17), so tha t  two cotiditiotis ofsiiiootliness a t  tlie points 0 and r for the contiuued 
functions tia(.), -CO < T < +no, nisy always be fulfilled with the four arbitrary 
constants. 

The  simplest solution to eqiiatioiis (3.16) and (3 .17)  are constant torsions K , ( T )  = 
tioa when the ends of the string are inoviog along helices obeying the following condi- 
tions (61 

(3.18) 

In this case we obtaiii froni q t d o t t s  (:S.13) atid (3.14) the equalities 

D ( g ( r ) )  = D ( I ( r ) )  = D ( y ( r  - 2r)) (3.19) 

whence, as explained in [ I O ] ,  i t .  follows (.hat the fuiic.t,ions f(r), g(r)  and g(r -2r) are 
related by tlie Mobius traiisforin;rliotis 

(3.20) 

The  constant coeRicieiits it1 (:S.20)-0,, y", 6,-0bey the normalization conditions 
nab, - payo = 1 and two r~4at.ioits following from the boundary conditions (3.1) and 
(3.2). The world surface z:"(  r, U )  of tlie relativistic string with massive ends turns ou t  
to be a helicoid in the three-dir~iet~sio~ial space E: [GI .  
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4. Trajectories w i t h  periodic t o r s i o n s  

It turns out tha t  the systeiri of (3.16) and (3.17) possesses smooth periodic solutions 

B M Barbnshov ni id  A A4 Chervynkou 

K, , (T)  = K a ( T  + 2.). (4.1) 
In fact, with the use of (4.1) we may write the sum and difference of (3.16) and (3.17) 
in the following form 

D ( / ' a d t ) ) + q  (I--) =D(/'\/..2...dq) 

From (4.3) one finds tlie integral of motion 

(4.2) 

(4.3) 

(4.4) 

where k 2  is an  arbitrary positive ronsta i~t .  Note tha t  relations (4.4) contain only one 
arbitrary constant k 2  so tha t  the  siiiootl~ness of tlie curves KO(.) continued outside the 
interval 0 < T < 1~ cannot be guarankecl. I n  this case the equalities (4.1) and (4.4) may 
give rise to discontinuous solut,ions for x,, (T) over the whole real axis -m < T < +m, 
which are not considered here. 

In the class of smootli fiinclioirs we find for the torsions ~ , ( 7 ) ,  a = 1 ,2 ,  in the 
interval 0 < T < R, the followiiig representation 

(4.5) 

which makes (4.4) an idootity. ' I l i e  real-valued function p ( ~ )  is defined by equa- 
tions (4.1) and (4.2). Let 11s sliow t h a t  p ( i )  is periodic p ( ~ )  = p ( i  + 2r), and can be 
extended smootlily lo thc wl io l~  r m l  asis 7. Inserting (4.5) into (4.2) we obtain the 
second-order differential eqiiatioii for p (  7 )  

The  substitution 
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changes (4.6) to a first-order rqu;it.ion for the function m ( p ) ,  and integrating the latter 
over p we obtain 

(4.8) d(p) = k4?’2(7) - F ( k ,  4) + k21P(T)l)‘ W * ( P )  

where 

A ( P )  = ~’(7) - ~ P Y ( T )  + 1 (4.9) 

and p is the integration constant. Now the function p ( r )  is defined by (4.7), the right- 
hand side of which, (4.8), is a polynornial of the fourth degree in p ( r )  with real-valued 
coefficients and positive d ( p )  I I J ~ ( Y )  > 0 for real p ( r ) .  After putting p ( 7 )  = 0 (4.8) 
becomes wz(0) = - k f / k 4  < 0, wheiice i l  follows that p ( 7 )  takes values either on the 
half-line p ( r )  > 0 or 011 p(r)  < 0. The latter in turn ensures tha t  the coefficients of 
polynomial (4.8) are fixed i i i  sigil. 

As is known [12], l l i e  sol i i l ioi i  of cqiiation (4.7) can be represented in terms of 
elliptic fnnctioiis will1 periods 2w and 2w‘. ‘ro t,liis end, for simplicity we consider the 
case of equal masses at the string ciids, nil = inz when, according to (3.4) k l  = k,, 
and one puts k4 = k l l q l ,  wlierc q is an arbitrary constant, and E = 2[1 + c(p)p] ,  
q 2 / 4 + E  > 4 .  In this case the elliptic c.urve (4.8) has two mutually inverse real-valued 
positive roots 

where 

(4.10) 

1 
4 U < X < - .  

- E +  Jm 
A =  

2 , p  

With the use of (4.10) the so1ul.io11 to eqiiat,ion (1.7)  niay be represented as follows 

(4.11) 

Here p(r) = g ( r , g , , g , )  is the Weierst,rass funct,iou with real period 2w and pure 
imaginary period 2w’,  yz aiid y3 i irc~ re;il-valud invariauts of the polynomial (4.8), 
g; - 279: > 0. In the interval 0 < r < w ,  W I I ~ I I  e l  < p ( r )  < CO, where 

by virtue of e l  > [ ~ ( 1 1 ~ 1 ) / 2 4 ] ~ ~ , ~ = , ~ ~ ,  t,llc fuiict.ion ( 4 . 1  I )  is sinootli a id  monotonically 
decreasing from a niaxiiniiiii Ip , (O) l  = pi at  point T = 0 down to a minimum Ip(w)l = 
p ,  = p;‘ at point T w aiid hiis tit IIIOSL three points of inflection. In accordance 
with the properties of t.he Weierstrsss function [IZ], outside the interval 0 < 7 < w 
the  function lp(r)I  continues will1 Ipcrioil 2w i n  i n i  even manner 

Ip(-r)I = IP(.)l (4.13) 
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and to tlie whole real axis i periodically with period 2w 
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IP(7 + 2w)l = llJ(r)l. (4.14) 

The lines p ,  and p z  = p; '  are eiivr lopes of the cnrve (4.11). 

defines the torsions lia(r) as sinool.h 2w-periodic. even functions 
Thus, formula (4.5) suypleme.nled with (4 , I l ) ,  according to (4.13) and (4.14), 

q,(-r) = tc,,(r) l i a ( i  + 2w) = l ia(r) (4.15) 

for all real values of the evolution parameter r .  To fnlfil equalities (4.1), the real 
half-period w of the function (4.11) is to be fixed a t  x that results in the following 
condition on the arbitrary constants p and q 

(4.16) 

The properties of torsions, (1.15) and (4,1G), together with expressions (3.5) for 
the metric-tensor component of tlie string world surface (2.3) imply 

i z ( - r , u a ) = i z ( i , u a )  j : 2 ( i + 2 x , u ~ ) = i Z ( r , u , )  a =  1 , 2 .  (4.17) 

To close this sec.tion, we note L l i a L ,  iii lire ntl = mZ case, the motion of the s'tring 
- k ,  aid  lil(r) = K , ( T ) .  In fact, the ends proceeds along siinilar curves wit ,h  rl. 

function (4.1 I )  obeys a siriiple rule, of addition ! -  

Substitution of (4.18) into cxpressioii (4.5) for 1 / l i 2 ( i )  gives 

whence with (3.5), it follows t,li;~t 

2 ( r , o )  = i 2 ( r , x )  (4.20) 

which is none other than tlie equality of lengtlis of trajectories of the masses in equal 
intervals of r 
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5 .  Def in i t i on  of the s t r i n g  world siwface 

We shall define the fiinctions f ( r )  and g(r)  from equations (3.13) and (3.14) taking 
into account tha t  their r igh~- l ra i~d sides a re  periodic owing to (4.1). Therefore the  
left-hand sides of these equations, i.e. the Schwarzian derivatives of the functions f ( r )  
and g ( r ) ,  are periodic a3 we l l ,  D ( f ( r ) )  = D ( f ( r  + 2a)), D ( g ( r ) )  = D ( g ( r  + 2a)) ,  
whence, as explaiued in [IO], i t  follows !,tiat 

The  coefficients of these Mobius transfornratious are taken to be the same so tha t  the  
torsions (3.6) and (3.7) obey the condition (4.1). Specifying b = c = 0 and a = d ,  
from (5.1) we obtain tlie periodic fiinct.ions f ( r  + 2a) = f ( r )  and g ( r  + 2a) = g ( r )  
corresponding to the case of t,lir ~nass less string. 

In the general case, the rw~ l - va l i i u l  pairs olsolotions ( f ( r ) ,  g ( r ) )  and ( f ( r  + 2a) ,  
g(r + 2r))  for ( U  + 1 1 )  2 2 have pitlier m c :  or t,wo points of intersection given by the 
equation 

F ( f ) = c f 2 ( r ) + ( d - ~ i ) l . ( r ) - 6 = 0  (5.2) 

whereas for ( ( I  + d )  < 2 [,hey do not iutcrsect a t  all .  With (5.1) the expression (3.7) 
for K ~ ( T  5 n) ~ S S U I I I ~ S  tlie forlr~ 

Expressing 4 f ' ( r )g ' ( r )  i i i  t e rn i s  or i i , (r)  froiii form~ila (3.6) arid inserting i t  back into 
(5.3) and using the notarioii ~ ~ ( r ) / i i ? ( r )  = p 2 ( r )  we arrive a t  the equation quadratic 
in s(7) 

p*(r)(f(r) - !/(T))' = [(ilf(r) + 6 )  - s(r)(cf(r) + 41'. (5.4) 

Two roots of this equai.ion coriespo1id to Lwo Merelit,  choices of.tlie sign of fiinction 
p ( r )  and can be writt,en a s  a C~IIIIIIOII cqiression 

(5 .5)  

whose coefficients, iii ~oiil.rast to t , l te  CL-^ of constant torsions (see formula (3.20)),  
depend on r and foriii a ii i ; i t , r ix w i t h  i,Ii<, ~ l c t e r ~ t ~ i ~ ~ ; i n i ~  

A = i?(r) - ( r i  + d ) i ~ ( r )  + I. (5.6) 

Comparing (5.1) w i t h  (5.5) \ v ( b  gvt, tliv t y d i t y  

whence it follows that  
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Substituting (5.5) and (5.7) int,o forir~iilar (3.G) and (3.7), respectively, and changing 
~ ~ ( r )  and nZ(r  f r) by the expressio~~s (4.5) we obtain the equation 

B M Bor6ashou oiid A hl Chervynkov 

t ha t  defines the two-valued fiiiictioi~ ( f ’ ( r ) / F ( f ) )  in terms o f p ( r )  and p ’ ( r )  as follows 

(5.9) 

Using (5.5), (5.7) and (5.9),  i t  is easy to show that  the boundary conditions (3.1) 
and (3.2) reproduce equations (4.7) and (4.8) with the constant p expressed in terms of 
the coefficients of transformation (5.1). Inserting (5.5) and (5.7) into equations (3.1) 
and (3.2) we represent. their siirn and diferenre in the form 

(5.10) 

Substitotion of (5.9) in1.o (5.1 I )  gives 

f / P / W  + k4 ‘ ( p ) ( k l  + k21p(r)l)’ = -k*p(T)  (5.12) 

where the sign of the root is ~letcrriiiiicd by I l lat of the function p ( r ) .  After comparing 
(5.6) with (4.9) and ideiil~ifying 

2 p = n + d  (5.13) 

(5.12) is easily recognized as (4.7). Upou snbstitntion of (5.9) into (5.10) the latter 
takes the form (4.G) aiid is also reduced t,o (4.7) and (4.8). Thus, the fiinction p ( r )  
with (5.13) is defined by tlie ri:~~r~~srnt~al.ioii (4.1 1) .  

Using (4.11) we now d e k r i i i i i i c  t.lic fiinctions f (7)  and g(r). Owing to (5.12) the 
expression (5.9) ~ S S I I I I I ~ S  tlw rorIl1 

To express the fiiiirlion y ( r )  i i i  t c r i i i s  of p(r) we consider the relationship 

(5.14) 

(5.15) 
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Substitution of expression (5.5) and (5.14) into (5.15) gives 

Integrating (5.14) and (5.15) we get, 

(5.16) 

(5.17) 

Here the integrals are depending on the conditions la+dl > 2, la+d( = 2 or la + dl < 2 
performed in terms of the same elementary functions since the discriminants of poly- 
nomials (5.2), (5.15) and (5.G) coincide, and the elliptic integral 

(5.18) 

with the use of (4.11), is split into a s u m  of normal elliptic integrals of the first and 
third kind. Solutious (5.17) slioiild be periodic up to the Mobius transformations 
(5.1). The  latter may, dependiiig 011 wlietlier In + r l l  > 2,  la + dl = 2 or In + dl < 2, 
always be reduced eitlier to 11ie hyperbolic, or parabolic, or elliptic form respectively 
by Mobius transformations (3 .3)  (see,  e.g. ,  [ IO]) .  Then iiisert,ing (5.17) into (5.1) with 
(4.13) leads to the  constraint, on arbitrary constants 11 + d and q 

in addition to (4.16). Here 0 is it r w l  period of the integral (5.18), and a function 
R depends on the choice o f  I’”r~iiiiet.riziilioii of the coefficients in (5.1). Finally, the 
coordinates x ” ( r ,  U )  of the iniiiiiiiiil stirface of tlre relativistic string with massive ends 
are given viaexpressions (5.17) for tlie functions f(r) and g(r) by formulae (2.8) and 
(2.9). 

6.  Couclusiou 

In  this paper, it has bccii sliowii (.hat tlie world sheet of a relativistic string with 
massive ends is completely deli l ied by trajectories of its massive endpoints. In a 
three-dimensional Minkowski space E: 1.Iicse trajectories are characterized by two 
geometric invariants, ii constant gcodcsic. curvature and torsion tha t  is generally a 
function of the evolution ~R~IIIIIOI~C~ r UII 1.11e str ing surface. When the torsions of 
these trajectories are C O I I S I . ~ L I I I ~ S ,  uur iip1)roach allows us to reproduce a well-known 
exact solution describing t l ie ro t i i t iu i i  of a straight-line string with massive ends in a 
given plane [4-G]. In  t,liis case t.lic t,rajvc.t,ories or iriot,ioii of the massive endpoints turn 
out to be helices and the surracc is a lielicoiil i n  E;. It is worth mentioning t,hat the 
helicoid is the only noo-trivial miiiiiiiiil surface belonging to the class of ruled surfaces 
generated by the motion of a straight lines i n  a space. Therefore a solution of that sort 
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does not describe transverse exc.itittions of the string and hence does not contribute 
to the linear behaviour of the static pot,ential between quarks at long distances. 

The  new solution we have found here describes a more intricate motion of the 
string when the massive endpoints moving along the same world trajectories with a 
constant curvatures and a periodic torsions. In this case the string world surface is 
not a helicoid and does not belong 60 the class of ruled surfaces, therefore i t  describes 
transverse excitations of the srriiig and, amording to [ I  I], radial motions of the mass. 

B M Barbnslroo nrrd A h/ Clteruyakov 
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